
AFRL-HE-WP-TR-2007-0038

Task Adaptable Display of
Information for Training,
Maintenance, and
Emergency Response

David S. Ebert
Jingshu Huang

Purdue University
Sponsored Program Services

302 Wood Street (Young Hall)
West Lafayette IN 47907-2108

December 2006

Final Report for June 2005 to December 2006

Air Force Research Laboratory
Human Effectiveness Directorate
Warfighter Readiness Research Division
Logistics Readiness Branch
Wright-Patterson AFB OH 45433-7604

Approved for public release;
distribution is unlimited.

NOTICE

Using Government drawings, specifications, or other data included in this document for
any purpose other than Government procurement does not in any way obligate the U.S.
Government. The fact that the Government formulated or supplied the drawings,
specifications, or other data does not license the holder or any other person or corporation;
or convey any rights or permission to manufacture, use, or sell any patented invention that
may relate to them.

This report was cleared for public release by the Air Force Research Laboratory, Human
Effectiveness Directorate, Public Affairs Office and is available to the general public,
including foreign nationals. Copies may be obtained from the Defense Technical
Information Center (DTIC) (http://www.dtic.mil).

AFRL-HE-WP-TR-2007-0038 HAS BEEN REVIEWED AND IS APPROVED FOR
PUBLICATION IN ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT.

FOR THE COMMANDER

 //SIGNED//

DANIEL R. WALKER, Colonel, USAF
Chief, Warfighter Readiness Research Division
Air Force Research Laboratory

This technical report is published as received and has not been edited by the Air Force
Research Laboratory, Human Effectiveness Directorate. This report is published in the
interest of scientific and technical information exchange and its publication does not
constitute the Government’s approval or disapproval of its idea or findings.

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing
this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-
4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently
valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

December 2006
2. REPORT TYPE

Final
3. DATES COVERED (From - To)
June 2005 – December 2006

4. TITLE AND SUBTITLE
Task Adaptable Display of Information for Training,

5a. CONTRACT NUMBER
FA8650-05-2-6648

Maintenance, and Emergency Response 5b. GRANT NUMBER

 5c. PROGRAM ELEMENT NUMBER
62202F

6. AUTHOR(S)
David S. Ebert, Jingshu Huang

5d. PROJECT NUMBER

 5e. TASK NUMBER

 5f. WORK UNIT NUMBER
1710D227

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

8. PERFORMING ORGANIZATION REPORT
 NUMBER

Purdue University
Sponsored Program Services
302 Wood Street (Young Hall)
West Lafayette IN 47907-2108

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)
Air Force Materiel Command AFRL/HEAL
Air Force Research Laboratory
Human Effectiveness Directorate
Warfighter Readiness Research Division

11. SPONSOR/MONITOR’S REPORT
 NUMBER(S)

Logistics Readiness Branch AFRL-HE-WP-TR-2007-0038
Wright-Patterson AFB OH 45433-7604

12. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES
AFRL/PA cleared on 26 April 2007, AFRL/WS-07-1049.

14. ABSTRACT

This project has developed techniques for effective display of information for environments
ranging from job training, to maintaining and repairing equipment, to responding to critical
situations. The techniques developed allow the adaptable display of digital model data (e.g.,
mechanical parts, buildings) from the desktop to mobile devices. The project also performed
an evaluation of the effectiveness of rendering methods for mobile devices for the task of
locating a specific mechanical part in an assembly for training or maintenance.

15. SUBJECT TERMS Job Training, Maintenance, Repair, Screens(Displays), Technical Data, Visual
Aids
16. SECURITY CLASSIFICATION OF:

17. LIMITATION
OF ABSTRACT

18. NUMBER
OF PAGES

19a. NAME OF RESPONSIBLE PERSON
Jill A. Ritter

a. REPORT
UNCLASSIFIED

b. ABSTRACT
UNCLASSIFIED

c. THIS PAGE
UNCLASSIFIED

SAR

36

19b. TELEPHONE NUMBER (include area
code)

 Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. 239.18

i

THIS PAGE LEFT INTENTIONALLY BLANK

ii

Table of Contents
List of Figures..iv
List of Tables ...iv
1. Project Summary..1
2. Technical Developments..1
3. MobileVis System..1

3.1 Data Structures and Transcoder ..2
3.2 Interactive Illustrative Rendering ..2

3.2.1 Silhouettes ..2
3.2.2 Selective rendering..4
3.2.3 Cutaway views ...4
3.2.4 Ghosted view..5
3.2.5 Magic lens ..6
3.2.6 Offset examination ..7
3.2.7 Peeling and animation ..7

3.3 Annotations...8
3.4 Performance ...9

4. Preliminary User Experiment ..12
4.1 Experimental Design..13
4.2 Apparatus ...13
4.3 Subjects ...13
4.4 Stimuli....... ..15
4.5 Procedure..16
4.6 Data Analysis ..16

5. Refined User Experiment...17
5.1 Stimuli ...17
5.2 Subjects ...18
5.3 Procedure..18
5.4 Data Analysis ..19

6. Final User Evaluation Study Design..22
7. Conclusions..22
8. References..23
Appendix A..24

 iii

List of Figures

Figure 1: Modified 2-pass silhouette algorithm...3
Figure 2: Selective rendering of a jet engine (left) and a Boeing 777 auxiliary power

unit ...4
Figure 3: Cutaway views of Boeing 777..5
Figure 4: Ghosted views ..6
Figure 5: Magic lens view..7
Figure 6: Labeling..8
Figure 7-1: Photo of our system running on a PDA ..9
Figure 7-2: Photo of our system running on a PDA ..10
Figure 8: Performance in different rendering modes...12
Figure 9: Results of our refined experiments...21

List of Tables
Table 1: Frame rates of rendering 3D models in different rendering modes...............11
Table 2: Models and their target parts ...14
Table 3: Test cases in preliminary user experiments ...15
Table 4: Rendering cases for training in refined experiments18
Table 5: Representative rendering cases in real tests...20

 iv

1. Project Summary
This project has developed techniques for effective display of information for
environments ranging from job training to maintaining and repairing equipment to
responding to critical situations. The techniques developed allow the adaptable
display of digital model data (e.g., mechanical parts, buildings) from the desktop to
mobile devices using illustrative rendering techniques to create the mobileVis system.
The mobileVis system has many illustrative rendering styles that can be selectively
applied to more clearly and succinctly show important information, including
silhouetting, selective rendering, cutaway views, ghosted views, magic lens viewing,
offset examination, object peeling, animation recording and playback, and labeling.
The project also performed an evaluation of the effectiveness of illustrative rendering
methods for mobile devices for the task of locating a specific mechanical part in an
assembly for training or maintenance.

2. Technical Developments
The main development in this project was the creation of a device adaptable rendering
system, mobileVis, for displaying digital model data that adapts the presentation of
the data based on the capabilities of the device and the ability to tailor the
representation to the task to be performed. Several illustrative rendering styles were
developed for mobile device rendering. A series of preliminary user studies were
conducted to refine the techniques and to design a final user experiment. The
experiment’s purpose is to evaluate different rendering styles’ effectiveness for the
important training, education, maintenance, and repair task of finding a part within a
mechanical assembly. The details of the mobileVis system, the preliminary informal
user studies, and the final evaluation experiment design are detailed below.

3. MobileVis System
The mobileVis system was developed to provide adapted rendering of digital models
on devices ranging from desktop PCs to tablet PCs to PDAs and
smartphones/pocketPCs. mobileVis was developed in C/C++ using OpenGL ES 1.0
for graphics rendering on mobile devices. The system consists of three modules, a
data transcoder that converts 3DS MAX models into a customized binary format for
fast loading of the models on mobile devices, a renderer equipped with a toolbox of
different illustrative rendering modes, and a labeling system which allows a dynamic
display of labels and text information associated with parts of a 3D model.

 1

3.1 Data Structures and Transcoder
Since most mobile devices do not have floating point processing units, the data
transcoder converts 3D models from floating point to a binary format using only
signed and unsigned short integers. The data at each vertex consist of a position (x, y,
z), a normal (nx , ny, nz), and a color/opacity (r, g, b, a). Each component of the
position and normal is represented by a 2-byte signed short integer and each
component of the color/opacity is represented by a byte. Thus, a total of 16 bytes are
needed per vertex. To minimize floating point operations, all the computations,
including the transformations of projection and model view matrices, are performed
using fixed point math [1].

Furthermore, for performance concerns, OpenGL ES has no support for
glBegin()/glEnd() and requires all the graphics to be performed using vertex arrays. In
order to minimize the number of duplicate vertices sent to the transformation stage of
the graphics pipeline, we use indexed vertex arrays and, thus, maintain a list of vertex
indices following the order of the triangle list in the original model. Each element in
this new vertex index list is represented as an unsigned short integer.

In order to retain hierarchical position information of different parts of an original 3D
model, the model is processed in a pre-defined order and the converted vertex array
data is sequentially stored. To identify the vertex indices of an object in the vertex
index list, we keep an array of the number of triangles of each object in the model.
With this array, the vertex indices of a selected object can be easily located in the
vertex index list by summing the number of triangles of all the objects stored prior to
the selected object.

3.2 Interactive Illustrative Rendering
This project also developed a toolkit for interactive exploration of 3D polygonal
models on mobile devices. The toolkit includes the following illustrative rendering
styles: silhouettes, selective rendering, cutaway views, ghosted views, magic lens
views, offset examination views, and animations.

3.2.1 Silhouettes
Silhouettes are important illustrative rendering techniques that convey shape and
spatial relationships for 3D objects. With polygonal models, silhouettes are defined as
the edges in the mesh that share a front- and a back-facing polygon. Isenberg et al. [4]
summarize existing silhouette algorithms and categorize them into three groups -
image-space, object-space and hybrid. When interactive frame rates are desired, and
when the devices have limited memory or slow processors, image-space and hybrid
algorithms are recommended. However, image-space algorithms usually require
reading and operating on a z-buffer which is not accessible within the OpenGL ES
profile. Therefore, we implemented a modified hybrid algorithm based upon the
Raskar and Cohen two-pass silhouette algorithm [5].

 2

Figure 1: Modified 2-pass silhouette algorithm employed onto a V8 engine dataset rendered on a
PDA without a bit buffer (left) and with a bit buffer (right)

Because line drawing via polygon mode glPolygonMode() is not available in OpenGL
ES, we rendered polygons in wireframe mode in the second pass of the silhouette
algorithm. However, this adaptation generates line artifacts on relatively large, flat
surfaces as shown in the left image of Figure 1. These lines are wireframe edges in the
polygonal mesh. To remove the artifacts, we employed a silhouette detection
technique modified from the edge buffer method described in [2]. Rather than using 2
bits per edge as proposed in the original algorithm, we stored only 1 bit per edge and
our 2-pass silhouette algorithm works in the following manner:

 Initialize all the bits in the bit buffer for edges to 0.

 Identify and mark silhouette edges by going through all of the mesh edges and

flipping bits corresponding to all of the edges of backfacing triangles. By doing
this, the bits that correspond to silhouette edges will have a resulting value of 1
because they are flipped only once, whereas edges on the backside will have
their bits flipped twice (and become 0) and the edges on front side will have
their bits unmodified (and remain 0).

 Perform two-pass rendering. In the first pass, draw front facing polygons with a

slight offset of the polygon nearest to the viewer, and set the mask of the depth
buffer to TRUE and that of the frame buffer to FALSE; in the second pass,
change the masks of both the depth and frame buffers, and draw the silhouette
edges found in the previous step with a pass condition in the depth test set to
“less than or equal to.”

 3

3.2.2 Selective rendering
Silhouettes allow users to perceive the shapes of objects easily. By combining
silhouettes with other rendering styles, it is easy to create a focus view of important
features in a model while still conveying the overall shapes and context information.
Figure 2 shows an effective use of a mixture of a silhouette rendering mode for the
overall shapes of the 3D models with surface and transparency rendering modes
applied to the interior feature objects. Both images were rendered in our mobileVis
system on a PDA with a 240x320 display resolution. Users first specify a rendering
style and then select the objects that need to be rendered in the selected style by
clicking on the objects. Because the selection mode is not supported intuitively in
OpenGL ES, we implemented picking by rendering object IDs into the frame buffer
with the depth test enabled and then read the color buffer back.

Figure 2: Selective rendering of a jet engine (left) and a Boeing 777 auxiliary power unit (right) on
a PDA

3.2.3 Cutaway views
For cutaway illustrations, different approaches for desktop platforms exist, such as
constructive solid geometry (CSG)-based cutouts, stencil buffer-based cutouts and
texture-based cutouts [3]. However, these techniques are either too computationally
expensive for mobile devices (e.g., CSG operations) or require hardware features not
available on most testing devices, including the device we used for testing, a Dell
Axim x51v PDA. The necessary missing hardware features are a stencil buffer or
hardware-accelerated fragment operations. Therefore, we implemented a selective
planar cutout technique for cutaway illustration in mobileVis. The system provides
users with an interface to dynamically enable and disable (1 <= n <= 5) clipping
planes and control their positions individually. In the cutaway mode, clipping planes
are applied on user-selected objects. These objects are maintained in a cutaway list
and rendered n times. Each time only the respective clipping plane is activated.
Unpicked objects are rendered only once before rendering any selected objects. Figure
3 shows two examples of cutaway views. In both images, the cutaway views are
combined with selective rendering to reveal interior structures of the polygonal

 4

models. The capping of the cutout surfaces, the shading of the surfaces formed by a
clipping plane and the object the plane clips, was implemented by performing an extra
rendering pass on the back faces of the polygonal model with lighting disabled and
depth testing enabled.

Figure 3: Cutaway views of Boeing 777 parts. Left: 3 clipping planes are enabled. Right: 2
clipping planes are enabled. Both were rendered in mobileVis on a PDA

3.2.4 Ghosted view
A ghosted view is a rendering technique that is similar to a cutaway view except that,
instead of doing a hard-edge cutaway, opacity in a selected occluding region is
reduced gradually to allow a transparent view of interior objects while still preserving
features of occluding objects, such as edges. Ghosted views help users to improve
their understanding of interior structures and their spatial relations to their contextual
objects. In mobileVis, we implement ghosted viewing by modulating the opacity
values at the vertices near a user-selected point in an object. The opacity of a
vertex in the picked object is modified as:

where d is the distance between the vertex and the central point of the triangle which a
user picks, is a predefined minimal opacity value between 0 and 1, e.g. 0.15,
and r = 0.25*min(dimx, dimy, dimz) where dimx, dimy, dimz are the sizes of x, y and z
dimensions, respectively. Figure 4 shows an example of ghosted views.

 5

Figure 4: Ghosted views of a Boeing 777 auxiliary power unit (left) and a jet engine (right) in
MobileVis running on a PDA

3.2.5 Magic lens
A magic lens is similar to a magnifying glass and can be used to illustrate and
emphasize the details of a portion of a model. The objects displayed under the lens
can be shown in different rendering styles or varying degrees of detail from their
context. In mobileVis, the system magnifies the portion of a model under the lens and,
furthermore, assigns a see-through capability to the magic lens. From observations of
mechanical 3D models, one can easily see that many of these models have a “shell” or
covering object, which is usually relatively large in size and less interesting (e.g.,
contains fewer features than interior objects that the shell occludes). Therefore, for the
magic lens view, a function is defined that decides if an object should be drawn under
the magic lens. If the area that an object covers under the magic lens exceeds a
threshold value, it is likely that the object is a shell or covering object and occludes
potentially interesting details of a model. In such cases, the portion of the object under
the magic lens is removed and the occluded objects are displayed with magnification.
Through experiments on most of our testing models, an optimal threshold value was
obtained and the visibility function is, therefore, defined as Equation 2.

where N is the total number of the objects, ci is the coverage (in pixels) of the object i,
and S is the area size of the lens. An example of a magic lens view is shown in the left
image of Figure 5. In this image, the car body cover on the driver’s side occludes the
view of the interior objects in the car. Through a magic lens, the portion of the cover
under the lens is defined as an occluding object using Equation 2 and, thus, removed.

 6

The interior structures of the car are exposed and magnified. The magnification factor
of the lens in the magnified image is 1.7.

Figure 5: Magic lens view of a car model (left) and offset examination view of a bike model (right)
in MobileVis running on a PDA

3.2.6 Offset examination
Spatially displacement of component parts is a commonly used technique to uncover
prominent features inside a model. The offset parts can be either displaced towards
the viewer and retain their relative spatial relationships to each other, or be spread out
on the plane perpendicular to the viewing vector, thus forming an exploded view, as
shown in Figure 5. In the first case, the displacement usually provides an effective
way to illustrate and emphasize a focal area of a 3D model. In mobileVis, we
implement an offset examination mode in which user-selected objects are “zoomed”
towards the viewer gradually and interactively. Besides spatial displacement, we also
magnify the picked objects. Furthermore, users can perform transformations on the
offset objects for close examination of the parts while other objects in the model are
not affected. An example of offset examination mode is presented in the right image
of Figure 5.

3.2.7 Peeling and animation
Traditional artists visualize procedural information, such as assembly and disassembly
sequences of a CAD model, using either exploded views with sequence numbers and
text explanations of procedural steps or arrow procedural views where arrows are
drawn from the image of one step to that of the next. In computer graphics, when an
interactive frame rate of rendering is achievable, animations are commonly used. In
our mobileVis system, we implemented an animation mode to visualize procedure
information. Users can specify an assembly/disassembly sequence by entering a
“peeling order” in which objects of a model can be interactively selected and removed
one by one by clicking and dragging using a stylus or a mouse. The system records
the sequence and can play it back upon request.

 7

3.3 Annotations
For annotation purposes, a dynamic labeling system has been integrated into
mobileVis (see Figure 6). A label is defined as a tuple consisting of the label text, an
anchor position on the corresponding model, and a position in screen space where the
label is located. Since mobileVis is an interactive system, the labels must dynamically
reposition themselves as the view and objects change.

Figure 6: Labeling of a jet engine in “ring-based” mode (left) and a New York City model in
“internal” mode (right). Both were rendered in MobileVis on a PDA

Label parsing. The labeling system can parse label data both from manually created
XML files or from 3DS models directly. When using manually defined data, the user
must define the anchor points on the object to which the labels refer, in addition to the
label text. If the labels are parsed directly from the 3DS model, the anchor position is
calculated by taking a centroid of the respective object part and placing the anchor at
the centroid.

Viewing modes. Labels can be viewed in three separate viewing modes: “internal,”
“ring-based,” and “flush-left/right.” Using the internal viewing mode, labels are
placed relatively close to the anchor point. Label-label occlusions are avoided by
detecting “clusters” of labels and repositioning those clusters using an optimization
procedure. The ring-based viewing mode calculates a circular extent about the
viewing object. The extent is based off the 2D projections of the points on the
bounding box of the object and is dynamically updated as the view changes. Labels
are uniformly positioned on the ring by determining the closest position on the ring to
the projected anchor point. The flush-left/right mode uses a similar technique as the
ring-based mode to position labels, except the labels are uniformly distributed on the
leftmost/rightmost extents of the bounding box.

 8

Resolution dependant labels. Since the labeling system may be used on displays
with varying resolutions, the label size is defined as a function of the screen resolution
being used. This is a reasonably simple procedure, since the labels are texture-mapped
and can easily be scaled with respect to display size.

Figure 7-1: Photo of our system running on a PDA

3.4 Performance
We tested our system on a Dell Axim x51v PDA with a 240x320 screen resolution, an
Intel 624MHz XScale CPU, 64Mb of RAM, 16Mb of video memory and Microsoft
Windows Mobile 5.0. For this PDA, after the operating system booted, the memory
available for running applications was approximately 30Mb. Figure 7-1 and Figure
7-2 show photos of our system running on the PDA.

Table 1 presents the number of vertices and triangles in our 3D test models and the
performance of our system in different rendering modes. Among the testing models
we used, “APU” is an auxiliary power unit from a Boeing 777 dataset, courtesy of
Boeing Company, and “B-part” is also a mechanical part from this dataset. Cutaway
view images of these two models are shown in Figure 3.

 9

In the first column of Table 1, several primitive rendering modes, including point and
surface modes, and various illustrative rendering modes are listed. In the selective
rendering mode, to obtain the performance statistics in the table, we defined a major
occluding object of a 3D model to be in silhouette mode and the other parts in surface
mode. The left image of Figure 2 shows an example of the setup. Similarly, in the
ghosted viewing mode in the table, opacity modulation at the vertices was only
applied to a relatively large occluding object in a model, even though our system
allows modulations to be applied to multiple objects simultaneously.

In the cutaway view mode, two clipping planes were used and the models were drawn
in surface mode. Since the number of rendering passes in the cutaway view mode is
the same as the number of clipping planes that are enabled, the performance of our
system under the cutaway mode varies depending on the total number of activated
clipping planes. In the offset examination view mode, one or two feature parts of a
model were selected and offset for close examination.

Figure 7-2: Photo of our system running on a PDA

Figure 8(a) plots the rendering performance for 3D models in varying rendering
modes on our test PDA. As the size of a model increases, the frame rate drops. On a
PDA, in addition to low CPU clock rate, limited memory, and slow bus speed, one of
the significant factors that directly affects rendering performance is the size of the
instruction and data caches. If the code and data being executed fits into the cache, the
system is able to operate at the full clock speed of the CPU. Otherwise, it will
constantly access memory and cannot execute at full speed. The PDA we used has an
Intel XScale CPU with a 32Kb instruction cache and a 32Kb data cache. As
mentioned in Section 3.1, the vertex data structure implemented in our system
requires 16 bytes per vertex. Therefore, the geometry buffer with more than 2048
vertices will overflow the data cache. Additionally, since we have to use vertex and

 10

color arrays for all the rendering tasks with the OpenGL ES API, we keep a list of
vertex indices for all the objects in a model. This vertex index list is constantly called
upon in rendering and, thus, also affects the performance.

Table 1: Frame rates of rendering 3D models in different rendering modes

From Table 1, we can see that the silhouette rendering mode is relatively slow
compared to other modes because of the view-dependent computations required to
find potential silhouette edges in Step 2 of the silhouette algorithm (described in
Section 3.2.1). A full traversal of the mesh is needed at this step and, subsequently, in
Step 3, two traversals over the mesh are performed. Besides the multiple-pass
rendering, limited memory and cache sizes aggravate the situation and further
deteriorate the performance.

In addition to running our system on the test PDA, we also tested our system on a
desktop platform using OpenGL 2.0. The desktop we used has a 1.6GHz Pentium M
CPU, 512Mb of RAM and an nVidia GeForce 6200 graphics card. Figure 8(b) is a
plot of the rendering performance of our system on the desktop PC using OpenGL 2.0.
The frame rates on the desktop are generally 2 to 9 times higher than those on the
PDA.

 11

Figure 8: Performance in different rendering modes on a PDA (a) and a desktop (b)

4. Preliminary User Experiment
There have been few previous attempts to analyze the perceptual impact and
effectiveness of rendering styles. Evaluation of visual representations can be
performed at component, system, or work environment level [6]. At the component
level, a common practice is to use controlled experiments where selected visualization
components are systematically varied and other input components are kept consistent.
Effectiveness, efficiency, scalability and user satisfaction are the standard metrics for
usability evaluation. For our empirical user study, we designed experiments that
evaluated the effectiveness of different illustrative rendering styles in mobileVis. The
effectiveness is defined as the capability of a rendering style to enhance the user’s
ability to understand the internal structures of 3D models and complete typical tasks
in mechanical training and maintenance. Quantitative measurements, including both
user response time and the number of operations during task completion, were used to
gain additional insight on the perceptual impact that different illustrative rendering
styles had on user performance in the mobile environment.

As described in previous sections, our system consists of low-level primitive
illustration styles such as silhouette, transparency, surface and points, as well as

 12

intermediate-level rendering modes including selective rendering, cutaway view,
ghosted view, offset examination, peeling view, and animation. Furthermore, some of
the intermediate-level rendering modes can be combined to achieve more complex
rendering effects. Our user study mainly focused on the effect of the
intermediate-level rendering modes on user perception.

4.1 Experimental Design
Finding an object and identifying the connected components of two objects are
fundamental to mechanical training and maintenance tasks, such as determining
interference, checking proper placement, and explaining details to coworkers [7].
Between the two tasks, finding an object is a prerequisite for identifying the
connected components of objects and, thus, more fundamental. For evaluating the
effectiveness of illustrative rendering styles in mobileVis, we asked subjects to find a
mechanical part in a complex 3D CAD model that is interactively rendered on a
mobile device.

4.2 Apparatus
We used a Dell Axim x51v PDA with a screen resolution of 240x320, an Intel
624MHz XScale CPU, a 16 Mb video memory, a 64Mb RAM and a 256 Mb ROM for
our experiments.

4.3 Subjects
In our preliminary user experiment, we selected 5 subjects (3 males and 2 females) for
evaluation. They were recruited on a voluntary basis. They were all 20-30 years old.
Among the 5 subjects, one of them had graphics programming experience before and,
thus, has some knowledge of illustrative rendering. Four of the subjects had either an
engineering or information science background. None of the subjects had previous
experience in CAD modeling of mechanical parts. In addition, none of the subjects
used a PDA or smartphone frequently.

 13

Table 2: Models and their target parts

 14

Table 3: Test cases in preliminary user experiments

4.4 Stimuli
In our experiment, four CAD models were shown to the subjects: a V8 engine model,
a jet engine model and two parts from a Boeing 777 dataset. For each of the four
models, a surface-rendered overview image and that of a target interior component to
be found in tests were generated and presented to the subjects, as shown in Table 2.
Four rendering styles – selective rendering, magic lens view, cutaway view and
ghosted view – were tested. The four models were each rendered in the four rendering
styles and, thus, created 16 test cases as shown in Table 3. A subject needed to
interact with all 16 test cases to complete the experiment. The appearance sequence of
the test cases was randomized.

 15

For each test case, the starting viewpoint and rendering styles was defined by a set of
parameters generated in a pre-processing step and stored on the test device. When
generating the parameters, we ensured that the target component in a 3D model was
viewable from certain angles and directly selectable. We also ensured that the initial
display angle of the model resulted in the target object being occluded. Subjects had
to interact with the system by rotating or zooming the model or panning a magic lens
to see the target component. Additionally, the total number of required operations was
designed to be approximately the same over all the test cases.

4.5 Procedure
Subjects were first introduced to the experimental setup. The experimental procedures
were explained, as well as how to interact with the rendering toolkits of mobileVis.
We demonstrated how to use different rendering styles to visualize 3D models. The
models we used for demonstration were different from the ones used in real tests. The
subjects interacted with the system and their questions on the usage of the rendering
toolkits were answered. The subjects were also instructed that in real tests, their
response time, number of operations on the system and the accuracy of their
selections would be recorded. We began the real tests when the subjects stated that
they understood the tasks and felt comfortable using the system.

In the real tests, Table 2 was presented to the subjects on a piece of paper. The images
in the Table were used as references in the tests so that the subjects understood which
component of a model they were expected to locate. For each test case in Table 3, the
subjects needed to find the target component in a model, enable a “Pick” button,
select the target object, and click a “Next” button to proceed to the next test case.

After finishing the real tests, the subjects were asked to complete a post-experiment
questionnaire where they: 1) rated the effectiveness of different rendering styles
viewed in the system on a 1-5 scale with 5 indicating the style that was most effective
in helping to identify target components and 1 for the least effective; and 2) provided
background information, such as if they had 3D modeling experience or frequently
used a PDA or smartphone, etc.

4.6 Data Analysis
We conducted ANOVA tests on the collected data to analyze the statistical
significance of rendering styles for the two measures, response time and the number
of operations. The ANOVA tests showed that the effect of a rendering style on a
subject's response time and the number of operations were weakly statistically
significant with p=0.0949 and p=0.1191, respectively.

We analyzed the factors that can significantly confound the experimental results for
analyzing the effect of rendering styles. The following factors were found:

 16

Complexity of a model. The difference in the complexities of models affects the
subjects’ response time in a statistically significant way (p<0.0001). The significance
is much higher than for the rendering styles (p=0.0949) in our preliminary
experimental results. This indicates that in order to show the effect of rendering styles
more significantly, the difference in the complexities of models needed to be reduced.

Training effects. From our results, we noticed that subjects generally complete the
tasks faster on the later test cases than on the earlier ones for a given rendering style.
This indicates that the subjects were in a learning stage when interacting with the
earlier test cases. Therefore, a formal training session should be added before the real
tests begin.

5. Refined User Experiment
We refined our experimental design based on the results from the preliminary
experiments and recruited more volunteers to perform the updated experiments.

5.1 Stimuli
In the refined experiment, we still used the four CAD models in Table 2 and their
target components. However, three of the models, including the V8 engine model, the
jet engine model and the part from a Boeing 777 dataset, were only used for the
training session. In the real tests, Model 4 in Table 2 was used. When generating test
cases, we slightly varied the locations of the interior components of Model 4 across
the test cases. In the training and real tests, the images in Table 2 were presented to
subjects for reference.

In the training session of our experiment, Models 1-3 in Table 2 were visualized in the
same five rendering styles that subjects would see in the real tests (see Table 4).
Besides the four rendering styles tested in our preliminary experimental design, we
added the outline rendering style for testing. In the actual tests, Model 4 was rendered
in the five styles with each style repeated for four test cases. In each test case, the
locations of the interior components of the model changed slightly. The complexities
of the varying models were maintained at a similar level and the frame rates for all
test cases were also kept approximately the same. Therefore, a subject needed to
interact with 20 test cases to complete the real test. The appearance sequence of
rendering styles in these cases was randomized using the magic square [8]. Table 5
shows representative rendering cases used in the real tests.

 17

Table 4: Rendering cases for training in refined experiments

5.2 Subjects
In our refined experiment, we had 7 subjects (5 males and 2 females) for evaluation.
Their ages are all within 20-40 years old. Among the 7 subjects, six of them had
graphics programming experience before. One of the subjects had neither an
engineering nor a science background. In addition, two of the subjects used a PDA or
smartphone frequently. In our experiment, we asked the subjects to first perform the
training tasks. The subjects who could not complete simple navigation tasks such as
rotation, translation and zooming of a model, or complete the training tasks within a
fixed time frame on the test device were identified as outliers.

5.3 Procedure
Subjects were first introduced to the experimental setup. We explained the
experimental procedures and demonstrated how to use mobileVis. Then users were
asked to go through a training session that had the same procedure as the real tests but
used the training models (see Table 4). For each test case in both the training session
and real tests, the subjects needed to find the target component within the model,
select the target, and proceed to the next case. The subjects were instructed that in the
real tests, their response time, number of operations and the accuracy of their
selections would be recorded with no break between performing the tasks. The real
tests began after the training session was completed and when the subjects stated that
they felt comfortable using the system.

 18

As in the preliminary experiments, after the real tests, the subjects were asked to fill
out a post-experiment questionnaire to collect their subjective evaluations on the
effectiveness of rendering styles and also their background information.

5.4 Data Analysis
We performed ANOVA tests on the data collected from the refined experiment. The
ANOVA tests showed that a rendering style had a statistically significant effect on a
subject's response time (p<0.0001) and the number of operations needed for task
completion (p<0.0341). Moreover, the averages and standard errors of response time
and number of operations (see Figure 9(a) and 9(b)) indicate that the overall statistical
significance is mainly due to the differences between the three categories of rendering
styles. In the first category were selective rendering, cutaway view, and ghosted view.
They were all similarly effective in assisting users in finding target components in the
test 3D model. Compared to these three styles, outline rendering was in a less
effective category and magic lens was in the least effective category.

Figure 9(c) shows the subjective ratings of the effectiveness of the five rendering
styles. The ratings roughly match the results in Figure 9(a). Selective rendering,
cutaway and ghosted view were evaluated as more effective rendering styles than the
other two styles: magic lens and outline view. However, a discrepancy exists in that
although subjects generally prefer a cutaway view to a ghosted view, for the model
used in our experiment, the latter allowed subjects to locate the target objects faster
than the former.

 19

Table 5: Representative rendering cases in real tests

 20

Figure 9: Results of our refined experiments

 21

6. Final User Evaluation Study Design
The results from our refined experiments are encouraging. We plan to use this
experimental design for a final user evaluation study and conduct the experiments on
more subjects (approximately 15-20 subjects) in January 2007. We will correct a
detected problem in inconsistent frame rates in one of the rendering modes, rerun the
experiment on these new subjects recruited from undergraduate ECE classes, and
perform the ANOVA analysis to determine statistical significance of factors in terms
of user response time, number of operations to complete task, and task accuracy.
We will also perform pair-wise comparison of each rendering style on the above three
factors as well as qualitative evaluation.

The results of this user study will guide the implementation of our future work on
semi-automatic determination of rendering styles based on task types and user
characteristics.

7. Conclusions
This project was successful in developing new techniques for effectively displaying
information for environments ranging from job training to maintaining and repairing
equipment to responding to critical situations. The techniques developed allow the
adaptable display of digital model data from the desktop to mobile devices using
illustrative rendering techniques in the mobileVis system. The mobileVis system has
many illustrative rendering styles that can be selectively applied to more clearly and
succinctly show important information, including silhouetting, selective rendering,
cutaway views, ghosted views, magic lens viewing, offset examination, object peeling,
animation recording and playback, and labeling. The project also performed an initial
evaluation of the effectiveness of illustrative rendering methods for mobile devices
for the task of locating a specific mechanical part in an assembly for training or
maintenance. The promising results of this pilot evaluation has confirmed that the
evaluation experiment design is valid and a full user study will be conducted using
this experimental design. The results of this project provide guidance for the use of
different rendering styles in displaying mechanical assemblies on mobile devices and
can be used as a building block for task-adapted electronic maintenance and repair
display in the future.

 22

8. References
[1] Astle, D. and Durnil, D. OpenGL ES Game Development. Course Technology
PTR, 2004.

[2] Buchanan J. W. and Sousa M. C. The edge buffer: a data structure for easy
silhouette rendering. In NPAR '00, pp. 39-42, 2000.

[3] Diepstraten, J., Weiskopf, D. and Ertl, T. Interactive Cutaway Illustrations,
Computer Graphics Forum, 22(3), pp. 523-532, 2003.

[4] Isenberg, T., Freudenberg, B., Halper, N., Schlechtweg, S. and Strothotte, T. A
developer’s guide to silhouette algorithms for polygonal model. IEEE Computer
Graphics and Applications, 23(4), pp. 28-37, 2003.

[5] Raskar, R. and Cohen, M. Image precision silhouette edges. In Proceedings of the
1999 Symposium on Interactive 3D Graphics, SI3D ’99, (Atlanta, Georgia, April 26 -
29, 1999). ACM Press: NY, pp. 135-140, 1999.

[6] Thomas, J. J. and Cook, K. A. Illuminating the Path: The Research and
Development Agenda for Visual Analytics. National Visualization and Analytics
Center, 2005.

[7] Kasik, D., Troy, J., Amorosi, S., Murray, M., Swamy, S., Co, B. and Seattle, W.
Evaluating graphics displays for complex 3D models, IEEE Computer Graphics and
Applications, 22(3), pp. 56-64, 2002.

[8] Magic square. http://mathworld.wolfram.com/MagicSquare.html. Last accessed:
January, 2007.

 23

Appendix A: Interactive Illustrative Rendering on Mobile Devices
Paper to appear in IEEE Computer Graphics and Applications, 2007, Approved for
Public Release: AFRL-WS-06-1469.

 24

Interactive Illustrative Rendering on Mobile Devices

Jingshu Huang∗ Brian Bue∗ Avin Pattath∗ David S. Ebert∗

Krystal Thomas††

∗ Purdue University Rendering and Perceptualization Lab (PURPL)

Purdue University, West Lafayette, IN

† U.S. Air Force Research Laboratory

Wright-Patterson AFB, OH

ABSTRACT

Illustrative rendering is a widely used visualization technique to
display conceptual information, describe problems and give insight
to solve them efficiently in science, engineering and the arts. Pro-
viding users with automated tools to generate illustrations at will is
a challenging problem. Adapting illustrative rendering techniques
from desktop platforms to mobile devices creates many hardware
and software issues. In this paper, we discuss adaptations of differ-
ent illustration techniques for rendering 3D models directly on mo-
bile devices for education and training purposes. The implementa-
tions of these illustration techniques address the limitations widely
encountered in low-end devices. An interactive mobile graphical
and textual rendering system with a toolkit of different illustration
modes has been implemented. The toolkit we propose allows users
to view interior structures of 3D models and instructional proce-
dures on mobile devices.

Keywords: mobile computing, mobile devices, visualization, il-
lustration, CAD

1 INTRODUCTION

Illustrations have been widely used in design, training and educa-
tion in science, engineering and the arts. People often depend on
these visual techniques to display conceptual information, describe
problems better, and solve them in reduced time. Providing users
with visual tools for automating the illustration process, in addi-
tion to accessing to these tools at will, has been an important and
challenging problem in computer graphics. Many advanced ren-
dering techniques have been developed on desktop platforms to
facilitate the generation of illustrations. However, adapting these
techniques to mobile platforms is challenging. Compared to their
desktop counterparts, mobile devices have many hardware limita-
tions including low screen resolution, limited input interfaces and
battery life, low bandwidth of system bus, slow CPU clock speed,
limited storage capacity, and lack of advanced graphics hardware.

Researchers and developers have been trying to address the hard-
ware issues on mobile devices with remote visualization, where a
client-server model is adopted and most of the rendering tasks are
performed server-side while the mobile client only handles the re-
ceipt of streamed images [6] [11]. This approach has been most

∗e-mail:{jhuang2|bbue|apattath|ebertd}@purdue.edu
†e-mail:krystal.thomas@wpafb.af.mil

popular for displaying complex 3D surface models and volumetric
data on mobile platforms. It relies on a network connection that
may not always be available or networking bandwidth may be in-
adequate to achieve a satisfactory performance on remote clients.

In recent years, computational power of mobile devices such as
PDAs and cellular phones has significantly increased. The contin-
uous improvements in processors, graphic chips, displays, power
management and wireless technology have greatly enhanced the
programmability and usability of mobile devices. Moreover, some
standardized software platforms for developing 3D graphical appli-
cations on mobile devices such as OpenGL ES and Direct3D Mo-
bile have been released and function as subsets of their ancestral,
desktop application programming interfaces (API). With these im-
provements in both hardware and software platforms, performing
visualization tasks - including interactive illustrations - using lo-
cal resources on mobile devices has become more feasible, but still
poses difficulties.

In this paper, we discuss the adaptation of advanced illustrative
rendering techniques such as interactive cutaway views, ghosted
views, silhouettes, and selective rendering on mobile devices. We
present our interactive, mobile, illustrative, 3D graphics and text
rendering system,MobileVis, that allows users to explore the in-
terior structures of 3D models, display the annotations of parts,
and visualize instructions, such as assembly and disassembly pro-
cedures for mechanical models.

This paper is organized as follows. Section 2 and Section 3
summarize related work in visualization on mobile devices and il-
lustration techniques. Section 4 presents a detailed description of
data structures and the different modes in the illustration toolkit in
MobileVis, including silhouette mode, selective rendering, cutaway
and ghosted views, magic lens mode, offset examination mode,
animations and labeling. Section 5 describes the performance of
these modes on 3D models with varying complexity and Section 6
presents conclusions and discussions.

2 ILLUSTRATIONS IN TRADITIONAL V ISUALIZATION

A wide variety of illustrative techniques are adopted in technical
manuals, scientific illustrations, textbooks, and encyclopedias (see
Table 1). These illustrative techniques help to convey the shapes
and forms of objects, reveal the interior structure of complicated
models, and describe procedural steps. Inspired by these tech-
niques, researchers in computer graphics have developed many ren-
dering algorithms to automate some of these illustrative conven-
tions on desktop platforms [5] [4]. Viola et al. [12] summarize
some current techniques for visualizing the internal structures of
volumetric models, including cutaway and ghosted views, impor-
tance driven rendering, and exploded and deformation views. How-

 25

Table 1: Traditional Illustration Styles.

(a) Silhouette (b) Selective rendering

(c) Cutaway view (d) Ghosted view

(e) Exploded view (f) Offset magnification

(g) Fish-eye view (h) Arrow procedural view
Images (a)-(e) are courtesy of Kevin Hulsey Illustration, Inc.

ever, all of these existing techniques require recent graphics cards,
processors, and programming interfaces, which are readily avail-
able on desktop platforms, but unavailable on mobile devices like
PDAs and cellular phones.

This gap in computational capabilities will continue to be a prob-
lem. Battery capacities for mobile devices generally improve at a
much slower rate than CPU and graphics chips, which forces hard-
ware, especially processing units, to be clocked at much lower rates.

Despite the issues with the computational gap, many illustrative
rendering algorithms originally developed for desktop platforms
need to be adapted to mobile devices in order to provide users with
the same functionality they have enjoyed with desktop 3D graphics
applications.

3 LOCAL V ISUALIZATION ON M OBILE DEVICES

Compared to the quantity of literature that discusses remote visual-
ization for mobile devices, the amount of published work on local
3D visualization on mobile devices is limited. This is largely due
to the lack of development of mobile devices for graphical appli-
cations. Until a few years ago, most handheld devices were hardly
capable of rendering a Gouraud-shaded cube, let alone performing
demanding and complicated visualization tasks directly on the de-
vices. However, mobile devices have now developed to the point

where direct 3D rendering at interactive rates is feasible. With the
first standardized 3D programming interfaces for mobile devices
- OpenGL ES - released, utilizing OpenGL ES and Mobile 3D
Graphics (M3G) for fast development of 3D Java games is becom-
ing more common in the mobile game industry. Research and de-
velopment on mobile 3D visualization applications, however, falls
far behind. Pocket Cortona [9] is one of the few available view-
ers for visualizing 3D models on PDAs, and has been used by re-
searchers in construction [8]. The software requires VRML models
and has limited surface shading modes for rendering. Researchers
at IBM developed a 3D CAD model viewer for product data man-
agement on PDAs [3]. This system consists of a file format con-
verter, a scene graph library, and a triangle rasterizer. However, the
rendering modes for viewing 3D models are also limited to surface
and wireframe.

4 IMPLEMENTATION

Our mobile rendering systemMobileViswas developed in C/C++
using OpenGL ES 1.0. OpenGL ES is a subset of the OpenGL
API designed for embedded systems. In OpenGL ES, many func-
tions have been removed from the original OpenGL API and a few
added. The most significant difference between OpenGL ES and
OpenGL is the introduction of fixed-point data types. The fixed
point data types support the computational capabilities of embed-
ded processors, which often lack floating point processing units. In
addition, the removal of theglBegin()/glEnd() semantics in
OpenGL ES is another big distinction between these two sets of
3D graphics APIs. OpenGL ES favors vertex arrays, which gen-
erate less overhead thanglBegin()/glEnd() for large datasets.
Many computationally intensive features in OpenGL, such as multi-
texturing and retrieval of dynamic OpenGL states, are either re-
moved or are optional in OpenGL ES, depending on the implemen-
tation. OpenGL ES provides us with a lightweight interface for
developing 3D graphics applications on low-end devices.

Our system consists of three modules, a data transcoder that con-
verts 3DS MAX models into a customized binary format for fast
loading of the models on mobile devices, a renderer equipped with
a toolbox of different illustrative rendering modes, and a labeling
system which allows a dynamic display of labels and text informa-
tion associated with parts of a 3D model.

4.1 Data Structures and Transcoder

Since most mobile devices do not have floating point processing
units, we have created a data transcoder that converts 3D models
from floating point to a binary format using only signed and un-
signed short integers. The data at each vertex consist of a position
(x, y, z), a normal (nx,ny,nz), and a color / opacity (r, g, b, a). Each
component of the position and normal is represented by a 2-byte
signed short integer and each component of the color / opacity is
represented by a byte. Thus, a total of 16 bytes are needed per ver-
tex. To minimize floating point operations, all the computations,
including the transformations of projection and model view matri-
ces, are performed using fixed point math [1].

Furthermore, for performance concerns, OpenGL ES has no sup-
port for glBegin()/glEnd() and requires all the graphics to be per-
formed using vertex arrays. In order to minimize the number of
duplicate vertices sent to the transformation stage of the graphics
pipeline, we use indexed vertex arrays and thus maintain a list of
vertex indices following the order of a triangle list in the original
model. Each element in this new vertex index list is represented as
an unsigned short integer.

In order to retain hierarchical position information of different
parts of an original 3D model, we process the model in a pre-defined
order and store the converted vertex array data sequentially. To

 26

Figure 1: Modified 2-pass silhouette algorithm employed onto a V8
engine dataset rendered on a PDA without a bit buffer (left) and
with a bit buffer (right).

identify the vertex indices of an object in the vertex index list, we
keep an array of the number of triangles of each object in the model.
With this array, we can easily locate the vertex indices of a selected
object in the vertex index list by summing the number of triangles
of all the objects stored prior to the selected object.

4.2 Interactive Illustrative Rendering

We have developed a toolkit for interactive exploration of 3D polyg-
onal models on mobile devices. The toolkit includes the following
illustrative rendering styles: silhouettes, selective rendering, cut-
away views, ghosted views, magic lens views, offset examination
views, and animations.

Silhouettes. Silhouettes are important illustrative rendering
techniques that convey shape and spatial relationships for 3D ob-
jects. With polygonal models, silhouettes are defined as the edges
in the mesh that share a front- and a back-facing polygon. Isen-
berg et al. [7] summarize existing silhouette algorithms and cate-
gorize them into three groups - image-space, object-space and hy-
brid. When interactive frame rates are desired, and when the de-
vices have limited memory or slow processors, image-space and
hybrid algorithms are recommended. However, image-space algo-
rithms usually require reading and operating on a z-buffer which is
not accessible in OpenGL ES profile. Therefore, we implemented a
modified hybrid algorithm based upon the Raskar and Cohen two-
pass silhouette algorithm [10].

Because line drawing via polygon modeglPolygonMode() is
not available in OpenGL ES, we rendered polygons in wireframe
mode in the second pass of the silhouette algorithm. However,
this adaptation generates line artifacts on relatively large, flat sur-
faces as shown in the left image of Figure 1. These lines are wire-
frame edges in the polygonal mesh. To remove the artifacts, we
employed a silhouette detection technique modified from the edge
buffer method described in [2]. Rather than using 2 bits per edge
as proposed in the original algorithm, we stored only 1 bit per edge
and our 2-pass silhouette algorithm works in the following manner:

1. Initialize all the bits in the bit buffer for edges to 0

2. Identify and mark silhouette edges by going through all of the
mesh edges and flipping bits corresponding to all of the edges
of backfacing triangles. By doing this, the bits that correspond
to silhouette edges will have a resulting value of 1 because
they are flipped only once, whereas edges on the backside will
have their bits flipped twice (and become 0) and the edges on
front side will have their bits unmodified (and remain 0).

3. Perform two-pass rendering. In the first pass, draw front fac-
ing polygons with a slight offset of the polygon nearest to the
viewer, and set the mask of depth buffer to TRUE and that of
frame buffer to FALSE; in the second pass, change the masks

 27

Figure 2: Selective rendering of a jet engine (left) and a Boeing 777
auxiliary power unit (right) on a PDA.

Figure 3: Cutaway views of Boeing 777 parts. Left: 3 clipping planes
are enabled. Right: 2 clipping planes are enabled. Both were ren-
dered in MobileVis on a PDA.

of both depth and frame buffers, and draw the silhouette edges
found in the previous step with a pass condition in the depth
test set to “less than or equal to.”

Selective rendering. Silhouettes allow users to perceive the
shapes of objects easily. By combining silhouettes with other ren-
dering styles, it is easy to create a focus view of important features
in a model while still conveying the overall shapes and context in-
formation. Figure 2 shows an effective use of a mixture of silhou-
ette rendering mode for the overall shapes of the 3D models with
surface and transparency rendering modes applied to interior fea-
ture objects. Both images were rendered in ourMobileVissystem
on a PDA with 240x320 display resolution. Users first specify a
rendering style and then select the objects that need to be rendered
in the selected style by clicking on the objects. Because selection
mode is not supported intuitively in OpenGL ES, we implement
picking by rendering object IDs into the frame buffer with depth
test enabled and then read the color buffer back.

Cutaway views.For cutaway illustrations, different approaches
for desktop platforms exist, such as constructive solid geome-
try (CSG)-based cutouts, stencil buffer-based cutouts and texture-
based cutouts [4]. However, these techniques are either too com-
putationally expensive for mobile devices (e.g., CSG operations)
or require a stencil buffer or hardware-accelerated fragment oper-
ations, which are not available on most mobile devices (although
OpenGL ES 1.0 supports the stencil test), including the testing de-
vice we use: a Dell Axim x51v PDA. Therefore, we implemented
a selective planar cutout technique for cutaway illustration inMo-
bileVis. We provide users with an interface to dynamically enable
and disablen(1≤ n≤ 5) clipping planes and control their positions

Figure 4: Ghosted views of a Boeing 777 auxiliary power unit (left)
and a jet engine (right) in MobileVis running on a PDA.

individually. In the cutaway mode, clipping planes are applied on
user-selected objects. These objects are maintained in a cutaway
list and renderedn times. Each time only the respective clipping
plane is activated. Unpicked objects are rendered only once before
rendering any selected objects. Figure 3 shows two examples of
cutaway views. In both images, the cutaway views are combined
with selective rendering to reveal interior structures of the polygo-
nal models. The capping of the cutout surfaces, that is, the shading
of the surfaces formed by a clipping plane and the object the plane
clips, was implemented by performing an extra rendering pass on
the back faces of the polygonal model with lighting disabled and
depth testing enabled.

Ghosted view.Ghosted views are a rendering technique that is
similar to cutaway views except that, instead of doing a hard-edge
cutaway, opacity in a selected occluding region is reduced gradually
to allow a transparent view of interior objects while still preserving
features of occluding objects, such as edges. Ghosted views help
users to improve their understanding of interior structures and their
spatial relations to their contextual objects. InMobileVis, we im-
plement ghosted viewing by modulating the opacity values at the
vertices near a user-selected point in an object. The opacityα of a
vertex in the picked object is modified as:

α =

1, d≥ r
d
r , α0r < d < r
α0, d≤ α0r

(1)

whered is the distance between the vertex and the central point
of the triangle which a user picks,α0 a predefined minimal opacity
value between 0 and 1, e.g. 0.15,r = 1

4min(dimx,dimy,dimz) where
dimx,dimy,dimz are the sizes of x, y and z dimensions, respectively.
Figure 4 shows an example of ghosted views.

Magic lens. A magic lens can be considered as an extension of
a magnifying glass and can be used to illustrate and emphasize the
details of a portion of a model. The objects displayed under the
lens can be shown in different rendering styles or varying degrees
of detail from their context. InMobileVis, we magnify the portion
of a model under the lens and, furthermore, assign a see-through
capability to the magic lens. From our observations of mechanical
3D models, we can easily see that many of these models have a
“shell” or covering object, which is usually relatively large in size,
and less interesting, that is, contains fewer features than interior
objects that the shell occludes. Therefore, for the magic lens view,
we define a function which decides if an object should be drawn
under the magic lens. If the area that an object covers under the
magic lens exceeds a threshold value, it is likely that the object is a
shell or covering object and occludes potentially interesting details
of a model. In such cases, we remove the portion of the object under
the magic lens and display the occluded objects in magnification.
Through experiments on most of our testing models, we obtain an
optimal threshold value and thus define the visibility function as
Equation 2.

 28

Figure 5: Magic lens view of a car model (left) and offset examination
view of a bike model (right) in MobileVis running on a PDA.

visibilityi =

1, ci
S ≤ 0.3

0, ci
S > 0.3

i = 1...N (2)

whereci the coverage (in pixels) of the objecti, andS the area
size of the lens. An example of a magic lens view is shown in the
left image of Figure 5. In this image, the car body cover on the
driver side occludes the view of interior objects in the car. Through
a magic lens, the portion of the cover under the lens is defined as an
occluding object using Equation 2 and thus removed. The interior
structures of the car are exposed and magnified. The magnification
factor of the lens in the magnified image is 1.7.

Offset examination. Spatially displacing different parts of a
model is a commonly used technique to uncover prominent features
inside a model. The offset parts can be either displaced towards the
viewer and retain their relative spatial relationships to each other,
or be spread out on the plane perpendicular to the viewing vector,
thus forming an exploded view (See Table 1). In the first case,
the displacement usually provides an effective way to illustrate and
emphasize a focal area of a 3D model. InMobileVis, we imple-
ment an offset examination mode in which user-selected objects are
“zoomed” towards the viewer gradually and interactively. Besides
spatial displacement, we also magnify the picked objects. Further-
more, users can perform transformations on the offset objects for
close examination of the parts while other objects in the model are
not affected. An example of offset examination mode is presented
in the right image of Figure 5.

Peeling and animation. Traditional artists visualize procedure
information such as assembly and disassembly sequences of a CAD
model using either exploded views with sequence numbers and text
explanations of procedural steps, or via arrow procedural views
where arrows are drawn from the image of one step to that of the
next (as shown in Table 1). In computer graphics, when an interac-
tive frame rate of rendering is achievable, animations are commonly
used. In ourMobileVissystem, we implemented an animation mode
to visualize procedure information. Users can specify an assem-
bly/disassembly sequence by entering a “peeling order” in which
objects of a model can be interactively selected and removed one
by one by clicking and dragging using a stylus or a mouse. The
system records the sequence and can play it back upon request.

4.3 Annotations

For annotation purposes, a dynamic labeling system has been inte-
grated intoMobileVis(see Figure 6). A label is defined as a tuple
consisting of the label text, an anchor position on the correspond-
ing model, and a position in screen space where the label is located.
SinceMobileVis is an interactive system, the labels must dynami-
cally reposition themselves as the view and objects change.

Label parsing. The labeling system can parse label data both
from manually created XML files, or from 3DS models directly.

Figure 6: Labeling of a jet engine in “ring-based” mode (left) and a
New York City model in “internal” mode (right). Both were rendered
in MobileVis on a PDA.

When using manually defined data, the user must define the anchor
points on the object to which the labels refer, in addition to the label
text. If the labels are parsed directly from the 3ds model, the anchor
position is calculated by taking a centroid of the respective object
part, and placing the anchor at the centroid.

Viewing modes.Labels can be viewed in three separate viewing
modes: “internal,” “ring-based,” and “flush-left/right.”

Using the internal viewing mode, labels are placed relatively
close to the anchor point. Label-label occlusions are avoided by
detecting “clusters” of labels, and repositioning those clusters us-
ing an optimization procedure.

The ring-based viewing mode calculates a circular extent about
the viewing object. The extent is based off the 2D projections of
the points on the bounding box of the object, and is dynamically
updated as the view changes. Labels are uniformly positioned on
the ring by determining the closest position on the ring to the pro-
jected anchor point.

The flush-left/right mode uses a similar technique as the ring-
based mode to position labels, except the labels are uniformly dis-
tributed on the leftmost/rightmost extents of the bounding box.

Resolution dependant labels.Since the labeling system may be
used on displays with varying resolutions, the label size is defined
as a function of the screen resolution being used. This is a reason-
ably simple procedure, since the labels are texture-mapped and can
easily be scaled with respect to display size.

5 RESULTS

We tested our system on a Dell Axim x51v PDA with 240x320
screen resolution, an Intel 624MHz XScale CPU, 64Mb RAM,
16Mb video memory and Microsoft Windows Mobile 5.0. For this
PDA, after the operating system booted, the memory available for
running applications was around 30Mb. Figure 7 shows photos of
our system running on the PDA.

Table 2 presents the number of vertices and triangles in our 3D
test models, and the performance of our system in different ren-
dering modes. Among the testing models we used, “APU” is an
auxiliary power unit from a Boeing 777 dataset, courtesy of Boeing
Company, and “B-part” is also a mechanical part from this dataset.
Cutaway view images of these two models are shown in Figure 3.

In the first column of Table 2, several primitive rendering modes,
including point and surface modes, and various illustrative render-
ing modes are listed. In the selective rendering mode, to obtain the
performance statistics in the table, we defined a major occluding
object of a 3D model to be in silhouette mode and the other parts

 29

(a)

(b)

Figure 7: Photos of our system running on a PDA

in surface mode. The left image of Figure 2 shows an example
of the setup. Similarly, in the ghosted viewing mode in the table,
opacity modulation at the vertices was only applied to a relatively
large occluding object in a model, even though our system allows
modulations to be applied to multiple objects simultaneously.

In the cutaway view mode, two clipping planes were used and the
models were drawn in surface mode. Since the number of rendering
passes in cutaway view is the same as the number of clipping planes
that are enabled, the performance of our system under the cutaway
mode varies depending on the total number of activated clipping
planes. In the offset examination view mode, one or two feature
parts of a model were selected and offset for close examination.

Figure 8(a) plots the rendering performance for 3D models in
varying rendering modes on our test PDA. As the size of a model
increases, the frame rate drops. On a PDA, in addition to low CPU
clock rate, limited memory, and slow bus speed, one of the signifi-
cant factors that directly affect rendering performance is the size of
the instruction and data caches. If the code and data that is being
executed fits into the cache, the system is able to operate at the full
clock speed of the CPU. Otherwise, it will constantly access mem-
ory and cannot execute at full speed. The PDA we used has an Intel
XScale CPU with 32Kb instruction cache and 32Kb data cache. As
we have mentioned in Section 4.1, the vertex data structure we im-
plemented in our system requires 16 bytes per vertex. Therefore,
the geometry buffer with more than 2048 vertices will overflow the

Table 2: Frame rates of rendering 3D models in different rendering
modes on a PDA

Models Chair Bike Jet Engine APU B-part
#vertices 2,366 6,112 19,666 35,304 43,030
#triangles 4,077 11,632 37,368 52,212 60,391

point
mode (fps) 55.6 23.8 7.8 4.3 3.6

surface
mode (fps) 41.6 19.5 5.6 3.9 2.8
silhouette
mode (fps) 11.9 4.3 1.4 0.8 0.6
selective

render. (fps) 26.3 12.5 3.4 2.2 1.4
cutaway

view (fps) 35.5 14.9 4.9 3.5 2.2
ghosted

view (fps) 40.1 16.9 5.3 3.9 2.7
magic

lens (fps) 18.5 8.1 2.3 1.9 1.3
offset

exam (fps) 37.5 17.9 5.5 3.8 2.8

data cache. Additionally, since we have to use vertex and color ar-
rays for all the rendering tasks with OpenGL ES API, we keep a list
of vertex indices for all the objects in a model. This vertex index
list is constantly called upon in rendering and thus also affects the
performance.

From Table 2, we can see that the silhouette rendering mode
is relatively slow compared to other modes because of the view-
dependent computations required to find potential silhouette edges
in Step 2 of the silhouette algorithm (described in Section 4.2). A
full traversal of the mesh is needed at this step and subsequently,
in Step 3, two traversals over the mesh are performed. Besides the
multiple-pass rendering, limited memory and cache sizes aggravate
the situation and further deteriorate the performance.

In addition to running our system on the test PDA, we also tested
our system on a desktop platform using OpenGL 2.0. The desk-
top we used has a 1.6GHz Pentium M CPU, 512Mb RAM and an
nVidia GeForce 6200 graphics card. Figure 8(b) is a plot of the ren-
dering performance of our system on the desktop PC using OpenGL
2.0. The frame rates on the desktop are generally 2 to 9 times higher
than those on the PDA.

6 CONCLUSION AND FUTURE WORK

In this paper we have presented a graphical and text-based visu-
alization system for mobile devices. We have focused on adapt-
ing traditional illustration techniques for rendering 3D models from
desktop platforms to mobile devices. In our implementation, low-
end devices and their limitations in hardware and software have
been addressed. A toolkit of different illustration modes including
silhouettes, cutaway views, ghosted views, selective rendering, and
labeling has been implemented. We have shown the results of these
illustration and labeling techniques, and analyzed the performance
issues related to mobile platforms.

For future work, we plan to investigate improving the perfor-
mance of some of our illustration techniques for mobile devices.
Besides that, we also plan to perform a user study to evaluate the ef-
fectiveness of different illustration techniques for rendering multi-
resolution 3D models for training and maintenance in concert with
Air Force Research Laboratories.

 30

(a)

(b)

Figure 8: Performance in different rendering modes on a PDA (a)
and a desktop (b)

7 ACKNOWLEDGEMENTS

We would like to thank Boeing Company for generously providing
us with a nice Boeing 777 dataset and Matthias Deller of German
Research Center for Artificial Intelligence for supplying the V8 en-
gine dataset. We also thank Professor Yung-Hsiang Lu of Electri-
cal and Computer Engineering Department at Purdue University for
his help on this project. This work has been supported by U.S. Air
Force AFRL-WS 06-1469, FA8650-05-2-6648 Grant, NSF ITR’s
Grant 0081581, 0121288, 0328984, and the U.S. Department of
Homeland Security.

REFERENCES

[1] Dave Astle and Dave Durnil.OpenGL ES Game Development. Course
Technology PTR, 2004.

[2] J. Buchanan and M. Sousa. The edge buffer: A data structure for easy
silhouette endering. 2000.

[3] Bruce D’Amora and Fausto Bernardini. Pervasive 3d viewing for
product data management.IEEE Comput. Graph. Appl., 23(2):14–19,
2003.

[4] J. Diepstraten, D. Weiskopf, and T. Ertl. Interactive Cutaway Illustra-
tions. InProceedings of Eurographics Conference ’03 (to appear in
Computer Graphics Forum), 2003.

[5] Bruce Gooch, Peter-Pike J. Sloan, Amy Gooch, Peter Shirley, and
Richard F. Riesenfeld. Interactive technical illustration. InSymposium
on Interactive 3D Graphics, pages 31–38, 1999.

[6] Daoud Hekmatzada, Jan Meseth, and Reinhard Klein. Non-
Photorealistic Rendering of Complex 3D Models on Mobile Devices.
In Ulf Bayer, Heinz Burger, and Wolfdietrich Skala, editors,Proceed-
ings of 8th Annual Conference of the International Association for
Mathematical Geology (IAMG), pages 93–98, 2002.

[7] Freudenberg B. Halper N. Schlechtweg S. Isenberg, T. and
T. Strothotte. A developer’s guide to silhouette algorithms for polyg-
onal models.IEEE Comput. Graph. Appl., 23(4):28–37, 2003.

[8] Robert R. Lipman. Mobile 3D visualization for steel structures. vol-
ume 13, pages 119–125. Automation in Construction, 2004.

[9] Parallel-Graphics. Pocket cortona, 2006. Available at
http://www.parallelgraphics.com/products/cortona/.

[10] Ramesh Raskar and Michael Cohen. Image precision silhouette edges.
In SI3D ’99: Proceedings of the 1999 symposium on Interactive 3D
graphics, pages 135–140, New York, NY, USA, 1999. ACM Press.

[11] Simon Stegmaier, Joachim Diepstraten, Manfred Weiler, and Thomas
Ertl. Widening the Remote Visualization Bottleneck. In Proceedings
of IEEE ISPA’03, pages 1–6. IEEE, August 2003.

[12] Ivan Viola and Meister Eduard Gröller. Smart visibility in visualiza-
tion. In W. Purgathofer L. Neumann, B. Gooch, editor,Proceedings of
EG Workshop on Computational Aesthetics Computational Aesthetics
in Graphics, Visualization and Imaging, pages 209–216, 5 2005.

 31

